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AFIT/GAE/ENY/OOM-08 

Abstract 

The applications of antiresonant frequencies to finite element (FE) model updating are few 

and usually limited to numerical examples. This work uses antiresonant frequencies in the model 

updating of an experimental structure and analyzes the physical correctness of the updated model 

by using it to detect damage. 

Antiresonant frequencies were used in the FE model updating of a six-meter aluminum truss. 

The model used rigid links to model welded and bolted joints.  Rigid link dimensions were used 

as parameters in an iterative update based on eigenvalue and antiresonance sensitivities.   The 

first update used 11 natural frequencies and 21 antiresonant frequencies from seven experimental 

frequency response functions (FRFs). The second update used only 11 natural frequencies. The 

antiresonant updated model produced a 46% better correlation to experimental FRFs than the 

non-antiresonant updated joint model. 

The antiresonant updated model was used to predict FRFs for the FTE in 112 damaged 

configurations.  Pattern classification and curve-fit algorithms for damage detection were tested. 

The curve-fit method correctly identified damage 92.6% of the time compared to 76.1% for the 

pattern classifier.  The high quality of the model was attributed to the use of rigid links that were 

updated using antiresonant frequencies. 

xv 



FINITE ELEMENT MODEL UPDATING USING 
ANTIRESONANT FREQUENCIES 

Chapter 1 - Introduction 

This chapter introduces finite element model updating and discusses some of the difficulties 

associated with current methods. The potential benefits of using antiresonant frequencies in model 

updating are also discussed.   The objective of this research and an overview of the following 

chapters are given. 

1.1  Finite Element Model Updating 

The finite element method (FEM) has become the predominant method of analyzing the 

dynamics of modern structures.   This method allows a complex continuous structure to be 

mathematically approximated as a discrete linear system made up of a mass, stiffness, and damping 

matrix.  The discrete system consists of an assembly of finite elements (FEs), each of which is a 

model of a small part of the structure with simple geometry. The accuracy of the method improves 

as more elements are used [6:1]. 

Unfortunately, modern structures typically have complex geometries which can require 

hundreds of thousands of degrees of freedom (DOF) to accurately model. Even relatively simple 

structures may have bolted or welded connections between members which can be difficult to 

model without resorting to a fine FE mesh. The computational burden involved in analyzing a 

model of such large order can be significant.   Most FE models make simplifying assumptions 

about the geometry and connections of a structure in order to keep the order of the model 

computationally manageable. 

Mottershead and Friswell identified three categories of errors associated with using the FEM 

for modeling structural dynamics: (i) model structure errors, which are a result of uncertainty in 



the governing physical relations. For example, modeling non-linear behavior with the linear FEM 

theory will produce this error; (ii) model parameter errors - which are a result of inappropriate 

boundary conditions or material property assumptions; (iii) model order errors - which are a result 

of not using a fine enough FE mesh [23:347]. 

For the dynamics of a FE model to correlate closely with those of an experimental structure, 

improvements must usually be made to reduce the errors associated with the FEM. Model 

updating has become the accepted name for using measured structural vibration data to correct 

the errors in FE models [25:1].   Model updating works by modifying the mass, stiffness, and 

damping parameters of the FE model until an improved agreement between model data and 

experimental data is achieved.   Certainly there are system identification techniques which can 

produce a mathematical model which will reproduce the measured data exactly.  These models 

are called representational models [9:99] and are inadequate for predicting the behavior of 

the system under different loadings, boundary conditions, or configurations.   Therefore, the 

goal of FE model updating is to achieve an improved match between model and experimental 

data by making physically meaningful changes to model parameters which correct inaccurate 

modeling assumptions. Theoretically, an updated FE model can be used to model other loadings, 

boundary conditions, or configurations (such as damaged configurations) without any additional 

experimental testing [23:351].  Such models can be used to predict operational displacements and 

stresses due to simulated loads. 

There are many different methods of finite element model updating.  This thesis focuses on 

model update methods that are parametric, modal, iterative, and sensitivity-based.   The word 

"parametric" describes the type of update parameters used.  Parametric update methods change 

physical parameters (such as material properties or physical dimensions) from the FE model to 

improve the agreement between model and experimental data.  The word "modal" describes the 

type of experimental data that is used to update the model. Modal methods attempt to optimize the 



correlation between modeled modal data and experimental modal data (such as natural frequencies, 

modal damping factors, or mode shapes).  The word "iterative" describes the process of model 

updating.   Iterative methods iteratively change the update parameters to converge on a final set 

that optimizes correlation between modeled and experimental data. Finally, the word "sensitivity- 

based" describes the method used to determine the changes that are made to the update parameters 

during each iterative loop.  In this case, modal sensitivities are used to determine changes in the 

update parameters. Sensitivities are defined as the ratio of the change in a measurement parameter 

to a small perturbation in a model update parameter. For example, the ratio of a change in the mode 

1 natural frequency to the change in the Young's Modulus of the longeron material is a sensitivity. 

The process of a parametric, modal, iterative, sensitivity-based update method begins with 

the formulation of an initial FE model using initial values for the update parameters. The modeled 

modal data and modal sensitivities are found using the FE model with the current update parameter 

values. The difference between the modeled and experimental modal data is then calculated. The 

model update method uses the sensitivities to determine a step in the update parameters that will 

reduce the difference between modeled and experimental data.  The FE model is reformed using 

the new values of the update parameters, and the process repeats until some convergence criteria is 

met. 

1.2 Problems with Modal Updating Methods 

After compiling a comprehensive literature survey and authoring a textbook on FEM 

updating, Friswell and Mottershead concluded that the current state of the art in FE model 

updating involves using natural frequencies and possibly mode shape sensitivities to update the 

model [9:282]. Although modal methods seem to be the most powerful updating approach, there 

are three major difficulties associated with including mode shapes in the method,  (i) Measured 

mode shapes are usually accurate to within 10% at best [9:162]. (ii) Measured mode shapes must 

either be expanded to the number of DOF in the FE model (using the not-yet-updated FE model) 
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or the FE model must be reduced to the number of measured DOR The two approaches increase 

error in the mode shape data and the FE model respectively, (iii) The calculation of mode shape 

sensitivities is difficult (compared to natural frequency sensitivities) and must be accomplished 

every iteration [23:358]. 

Clearly, mode shapes increase error and add complexity to modal update methods.   Mode 

shapes are often used despite these problems because the update process cannot afford a reduction 

in the quantity of measured data. The ability of model updating to converge on unique parameters 

is largely dependent on the amount of measured data available [9:201]. 

1.3 Antiresonance 

Antiresonant frequencies are defined as the frequencies at which the magnitude of the 

frequency response at a measured DOF goes to zero [28:395]. In 1992 Lallement and Cogan [19] 

introduced the concept of using antiresonant frequencies to update FE models.  The motivation 

for using antiresonant frequencies in updating is that they are easily and accurately measured like 

natural frequencies. Furthermore, unlike natural frequencies, numerous antiresonant frequencies 

can be measured, since every different frequency response function (FRF) between an actuator and 

a sensor contains another set of antiresonant frequencies.  Lallement and Cogan referred to this 

increased amount of data as an "enlargement of the knowledge space" [19]. In 1998, Mottershead 

[26] showed that antiresonance sensitivities can be expressed as a linear combination of eigenvalue 

and mode shape sensitivities. Antiresonance sensitivities are defined as the ratio of the change in 

the square of an antiresonant frequency due to a small perturbation in a model update parameter. 

Mottershead also numerically demonstrated that the dominant contributors to the antiresonance 

sensitivities are the sensitivities of the nearest eigenvalues and corresponding mode shapes. 

Therefore, Mottershead concluded that antiresonant frequencies can be a preferred alternative to 

mode shape data. 



1.4 Thesis Objective 

Having introduced FE model updating, the problems encountered with using measured mode 

shapes, and the benefits of using antiresonant frequencies, the objective of this thesis can be 

given.  The goal of this research was to extend a current iterative modal updating method to use 

antiresonant frequencies as a replacement for mode shape data. This objective was broken into 

five phases: literature review, experimental data collection, FE modeling, FE model updating, and 

damage detection. 

FE model updating using antiresonant frequencies was applied to the modeling of the Air 

Force Institute of Technology (AFIT) six-meter flexible truss experiment (FTE). The updated FE 

model was compared to modal updated and FRF updated FE models of the same structure. Finally, 

the validity of the model and the updating method was evaluated by using the updated model 

to detect damaged members in the FTE. The ability to correctly model damaged states of the 

structure (states which were not involved in the updating process) was chosen to be an indicator of 

the success of model updating using antiresonant frequencies. 

1.5 Thesis Overview 

This chapter briefly introduced and motivated FE model updating using antiresonant 

frequencies.  Chapter 2 presents related work in FE model updating, damage detection, 

antiresonance, previous research on the FTE, and joint modeling.   Chapter 3 presents the 

mathematical theory for antiresonance and model updating.   Chapter 4 contains a description 

of the FTE, the experimental setup, and the data collection methods used. Chapter 5 details the 

development of the FE model and the initial correlation between model and experimental data. 

Chapter 6 gives the results of model updating and compares the updated model to previously 

updated models of the FTE. Chapter 7 applies the updated model to the problem of damage 

detection and compares the results to previous damage detection results.  Chapter 8 presents the 

conclusions and recommendations from this research. 
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Chapter 2 - Background 

This chapter contains a literature review on subjects related to this thesis. The topics of model 

updating, damage detection, antiresonance, previous research on the FTE, and joint modeling are 

covered. Lastly, these areas are summarized and the contributions of this research are stated. 

2.1  Finite Element Model Updating 

Mottershead and Friswell authored two excellent references, a literature survey [23] and a 

textbook [9], on the subject of model updating.  In their text, Mottershead and Friswell divided 

model updating methods into three categories: direct modal methods, FRF methods, and iterative 

modal methods.  The following three paragraphs contain a summary of these methods based on 

Mottershead and Friswell's text. 

Direct modal methods have the advantage in many cases of exactly reproducing the 

experimental data without iteration and excessive computation.   However, they often have the 

disadvantage of updating the mass and stiffness matrices directly so that the changes may have 

little physical meaning to the original FE model.   Examples of direct methods are Lagrange 

multiplier methods, optimal orthogonalization of the modal matrix, and eigenstructure assignment. 

Mottershead and Friswell [9:137] provide a table comparing the various cost functions, constraints, 

and update equations that define the numerous direct modal methods. 

FRF methods use the FRF data to update the FE model. These methods have the advantage 

of using measured data directly. The major disadvantage of FRF update methods is that damping 

must be included in the FE model. Typically, model updating is concerned with finding the correct 

mass and stiffness parameters of the model and not the correct damping parameters.   In fact, 

damping is notoriously difficult to model accurately, and any changes to damping parameters made 

by updating may not be physically significant [9:281].  Moreover, although FRFs contain more 

data points than modal data, they do not contain significantly more information. 



Iterative modal methods are popular and frequently used methods that use eigenvalue and 

mode shape sensitivities to minimize some cost function.  Often this cost function is simply the 

sum of squares of the difference between experimental and modeled natural frequencies and mode 

shapes. Typically, the cost function is a non-linear function of the update parameters. Therefore, 

these methods generally use a truncated Taylor series expansion of the modal data in terms of the 

update parameters. Small iterative steps are taken with sensitivities recalculated at every iteration 

until the non-linear cost function is minimized.  This method has the advantage of allowing any 

parameter in the FE model to be used as an update parameter since the FE model is reconstructed 

and an eigenanalysis accomplished at every iteration.   Obviously, this method can become 

computationally burdensome for large FE models. However, the eigendata sensitivities generally 

converge the update parameters within a reasonable number of iterations. 

An iterative modal method, called the penalty method, was chosen for this research for two 

reasons.  First, the penalty method could easily be extended to include antiresonant frequencies 

in updating.   Second, it allowed the geometric dimensions of the joints to be used as update 

parameters. 

2.2 Damage Detection 

Damage detection provides an excellent indication of model quality when damaged data is 

not used in updating. Because damage detection was used in this thesis as a test for model quality, 

this literature review focuses on the reliance of damage detection methods on FE models and the 

errors that inaccurate FE models cause. 

Damage Detection using vibration data has been a very active research topic for the last 

30 years [37:1]. Doebling, et al. [7] has written a thorough review of current damage detection 

methods which shows that most methods rely heavily on some numerical model of the structure. 

For example, early damage detection methods directly updated the mass and stiffness matrices 

based on experimental data from the damaged structure. There were significant problems with that 
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technique, and most current methods now rely on updating parametric FE models [10:3].  Other 

methods rely on FE models to create a catalog of FRFs or modal data for the various damage cases. 

Neural networks have recently been applied to damage detection, and they also typically require 

FE models to produce training data for damage states [7]. 

Friswell and Penny [10:5] called the reliance on FE models a major problem with damage 

detection.   Damage detection techniques have difficulty distinguishing whether discrepancies 

between modeled and experimental data are due to damage or due to modeling errors. Friswell and 

Penny identified model updating as a critical approach to reducing this problem. Both Doebling, et 

al. [7] and Friswell and Penny [10] concluded that there is a need for damage detection techniques 

to be tested on experimental structures rather than using numerical simulations. 

2.3 Antiresonance 

Antiresonance is often presented in vibrations textbooks in the design of vibration absorbers 

[21:131]. An example of this type of research was conducted by He and Li [14]. They were able 

to relocate antiresonances of a vibrating system by making local changes to the mass and stiffness 

of the vibrating system.  They applied the theory to numerical examples, including a four DOF 

system and an eight DOF truss model. Mottershead [27] established the necessary and sufficient 

conditions to cancel a natural frequency with an antiresonance.  Such a cancellation is sometimes 

referred to as pole-zero cancellation. Pole-zero cancellation removes the large amplitude resonant 

response normally associated with excitation near a natural frequency. 

Williams and Juang [43] researched flexible space structures with collocated sensors and 

actuators from a control system perspective. They were able to relocate transmission zeros to 

produce pole-zero cancellations.  They proved that the closed loop poles produced by applying 

pole-zero cancellation have sensitivities approaching those of the transmission zeros.   Schrader 

and Sain [34] authored a survey on research on system zeros. Their development and discussion 



of the subject focused on state space formulations and addressed topics such as the transmission 

zeros for multi-input multi-output (MIMO) systems. 

Tohyama and Lyon [38] analyzed the zeros of transfer functions in multi-DOF vibrating 

systems. They analyzed the different types of zeros present in transfer functions such as conjugate 

zero pairs, coincident double zeros, minimum phase zeros, and non-minimum phase zeros. 

Numerical examples were presented using the transfer function of a rectangular room.  Methods 

of identifying the different types of zeros from frequency response plots were also included. 

Wahl, et. al. [40], addressed the physical significance of resonance-antiresonance behavior 

in lightly damped structures.  They stated that the antiresonant frequencies of the driving point 

FRF (an FRF between a collocated actuator and sensor) are identical to the resonance frequencies 

of the structure that is fixed at the driving point DOF. Therefore, with one test it is possible to 

gain information about the structure under two sets of boundary conditions. Analogous statements 

about multi-input systems were developed.   The effect of local structural mass and stiffness 

changes on antiresonant frequencies was also discussed.   Experimental investigations were 

conducted on a steel plate. They concluded that antiresonance behavior has important applications 

to FE model updating. 

La Civita and Sestieri [18] investigated the physical interpretation of antiresonance in 

continuous one-dimensional systems.   Antiresonant frequencies were found to correspond to 

resonances frequencies of particular substructures.   These substructures and their boundary 

conditions were defined. The correspondence was exact for multi-DOF one-dimensional systems 

and longitudinal rods and approximate for beams. 

Feng-Quan, et. al. [8] compared the analytical development of the transfer function of 

an undamped cantilever steel beam to experimental data.   They analyzed the antiresonance 

characteristics of the beam as well as defined pseudo-resonance as the appearance of an extreme 

value (which is not a resonance) between two antiresonant frequencies. 



Rogers [33] first derived the general eigenvalue and eigenvector derivatives of non-symmetric 

matrices, which can be applied to the calculation of antiresonance sensitivities.   Wang [41] 

developed a thorough theory of antiresonance and antiresonance sensitivity analysis. Antiresonant 

frequencies for any responses that are a linear combination of displacement responses at different 

DOF were found for arbitrary forcing functions.   Formulas for antiresonant response modes 

(which are analogous to mode shapes) and their sensitivities were also presented.  Wang applied 

his theory to the numerical example of a beam, a plate, and a 10 DOF spring-mass system. 

Lallement and Cogan [19] applied antiresonant frequencies to FE model updating.   They 

developed an iterative parametric update technique which combined eigenvalue sensitivities, 

antiresonance sensitivities, orthogonality relations, and dynamic flexibility relations into one non- 

homogeneous linear system of the form [J4]{^} = {&}, where {x} is a vector of update parameters 

and {b} is a vector of discrepancies between model and measured data.  Rade, et. al. [30] built 

on this concept by considering the generalized grounding of DOF. The generalized grounding of 

DOF was defined as the elimination of dynamic response at one or several DOF for a convenient 

system of control forces.   The eigendata for a structure with zero dynamic response at several 

DOF's was obtained from an eigensolution of submatrices of the dynamic flexibility matrix. This 

method allowed the system to be considered under several different boundary conditions using 

data from only one test configuration.  Rade, et. al. incorporated the increased set of data into a 

linear system in the form [>l]{x} = {&} as Lallement and Cogan [19] had done.  The technique 

was applied to a real structure as well as simulated numerical examples of a free-free beam and a 

frame structure. The new information attained from antiresonances or new generalized boundary 

conditions dramatically improved the ability of model updating to converge on the correct 

parameter values.  Also, it was demonstrated that, in some cases, antiresonances are much more 

sensitive to parameter changes than natural frequencies. 
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Mottershead [26] analyzed the sensitivities of antiresonances and expressed them as functions 

of the eigenvalues and mode shapes of a structure.   He demonstrated, through a numerical 

example, that the dominant contributors to the antiresonance sensitivities are the sensitivities of 

the nearest eigenvalues and corresponding mode shapes. He concluded that antiresonances are not 

independent of the structural eigendata, but antiresonances may be a preferred alternative to using 

mode shapes because of the accuracy with which they can be measured. 

2.4  Previous Research on the Flexible Truss Experiment 

The FTE was originally part of the 12-Meter Truss Active Vibration Control Experiment 

developed for the Wright Laboratories Large Space Structures Technology Program [12]. The 

FTE was given to AFIT where it is currently set up as a 6-Meter truss. 

Several FE models of the FTE have been created.  Two FE models of the 12-meter version 

were created for the 12-Meter Truss Active Control Experiment [12] to predict its open-loop 

response. The first model represented the truss as a frame structure with 192 beam elements and 

384 active DOF. Each truss member was modeled as a two-noded beam element with 6 DOF 

per node.  The four nodes at the base were fixed to simulate the cantilever boundary condition. 

The actuators were modeled as single DOF spring mass damper systems with 1.0 Hz natural 

frequencies and 10% modal viscous damping. This model did not predict the natural frequencies 

of the truss well. The predicted bending mode frequencies of the model were too high by 10% and 

the torsional mode frequencies were too low by 10%. The truss was also tested and modeled in a 

free-free configuration (supported by soft springs) with similar discrepancies reported. Attempts 

to find a physically meaningful combination of parameters that would soften the bending modes 

but stiffen the torsion modes were unsuccessful. 

An equivalent continuous beam FE model was developed as part of the same experiment. 

Each of the 16 bays were modeled as a single beam element resulting in a 16 element, 33 node, 

and 136 DOF model.   Element properties were found by applying axial, bending, torsion, and 
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shear loads to a detailed model of a single truss bay.   The initial beam model agreed well with 

measured data through the third bending modes. 

Captain Richard Cobb studied damage detection on the 6-meter FTE. Cobb modeled the 

FTE as a frame structure with joints modeled by a single node. Cobb's model, called the baseline 

model, had 36 nodes and 192 DOR Cobb used the first eight natural frequencies and mode shapes 

to update 23 parameters using a software package called Automated Structural Optimization 

Software (ASTROS-ID). Cobb had trouble extracting measured mode shapes for model updating 

and damage detection due to closely spaced fourth and fifth modes (first breathing and second 

bending modes).   He was forced to use his FE model to uncouple the mode shapes.   This 

illustrated the type of problems encountered when using mode shapes in model updating and 

damage detection. The update process converged in six iterations and 18 minutes on a SPARC 10 

workstation. Figure 1 and Figure 2 contain FRFs from the baseline before and after tuning. 

Cobb developed a new assigned partial eigenstructure (APE) method to detect damage on 

the FTE. Cobb tested 2 simulated damage cases, one diagonal fully removed, and one diagonal 

replaced with a diagonal of 50% of normal cross sectional area. In both cases, the method was able 

to correctly identify the small area of the truss where the damaged member was and approximate 

the percentage of damage. The damage detection calculations took approximately 9 minutes on a 

SPARC 20 workstation. 

Captain Eric Swenson used pattern classifiers to detect damage on the FTE. He created a 

new finite element model, called the stiff model, which used short stiff beam elements to model 

the joints of the FTE. This increased the size of the model to 996 DOF. Swenson found that the 

position of the diagonal endpoint nodes was critical to accurately model the torsional modes of the 

FTE. This was because the diagonals are capped with solid aluminum ends, which are relatively 

heavy. These heavy ends were modeled as lumped masses, which, if placed at corner joint nodes, 

produced torsional modes that were too low in frequency. Swenson was able to lump these masses 
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in their realistic locations, reducing the torsional inertia of the structure, and raising the torsional 

natural frequency to match experimental data. However, this required relatively long stiff elements 

which overstiffened the joints.   Swenson compensated by reducing the stiffness of his stiff 

elements to give a good initial fit between the modeled and experimental FRFs.   Swenson used 

the FRF based model updating routine from the MATLAB™ Structural Dynamics Toolbox™ 

(SDT) to update 9 parameters. The update took approximately 15 hours to converge to a solution 

on a SPARC 20 workstation. Figure 3 and Figure 4 show the stiff model before and after updating. 

The updated stiff model showed a considerably better fit than the updated baseline model. 

However, the antiresonances of the updated models did not match the experimental antiresonances 

well.  The modal updated baseline model produced better damage detection results than the FRF 

updated stiff model. Damage detection results are included in Table 1.  Swenson concluded that 

the low damage detection accuracy rates were due to FE model errors, since the pattern classifier 

was able to correctly identify damage 100% of the time when using the experimental data for the 32 

damage cases. Swenson concluded that the FTE joints were the source of most of the model errors. 

Table 1. Damage Detection Using Pattern Classifier Error Rate [37] 

Modal-Updated Baseline Model FRF-Updated Stiff Model 

Initial error rate 18% 23% 
Related member errors 15% 9% 
Unbroken errors 2% 10% 
Unrelated errors 1% 4% 

2.5 Joint Modeling 

The joints are typically the most difficult part of a truss to model [17].   In addition to 

the complex geometry, joints exhibit non-linear behavior such as the microscopic slip in bolted 

connections [29].  Suarez and Matheu [36] have shown that joint flexibility can have a significant 

effect on a structure's dynamics. 

13 



(a) Y Axis Node :36 
20 

0 

-20 

-40 
I ro   > \j 
1 c 

c 
o 

/    O) c C w o 
-60 'to 

03 
m 

o 
h- 

o 
h- 0 o •a ■o 

-80 
in 1- c c 

o o ■g o o 
a> 0 x: 

inn Li. LL . CO CO   , t- 
20 

Hz 
40 60 

(b)XA) <is Noc Je 36 
20 

■ 

<n o 0 Mi 
o 

ii 
r -20 
n / ro 

D)\ /  c 
to 

<D 
a> 
o 
o 
< 

-40 

-60 

1  o> 1   c 
1   x> c 

a> 
I   m 

ro.E 
C XI   < 

C XI 
m c 

ro 
a> 

CD 
X> 
C 

ro c 

0  £ 
00 m 

-fit) ^. o o ■O   X> 
CO co o o 

."- o 0) x: x: 
_mn u. LLCO co 1- 1- 

20 40 60 
Hz 

(c) Y Axis Node 33 
20 1 

a> 
ü 0 
n 

II 
r -20 
n ro 
Lu -40 c o 
cu 
0 o 
o -60 

/   O) 
I    c 
1    X) 

c 
o 
to 

x> 
c 
<D 

m 

CO 

o 
1- 

c 
o 

"to 

< a> o XI •D i2 m 1- c c 
-fiO o o ■g 

Ü o 
i— O a> x: 

mn U- LL . co CO  . 1- 

20 

-20 

-40 

-60 

-80 

-100 

20 40 
Hz 

(e) Y Axis Node 20 

60 

ro?/ c 
o 

/ o> c c CO c 
o 

/   X! c 'p CD 
o CO 

|2 0) o ■o •o 
CD H c c 

o o ■g 
Ü o 
0 a> x: 

LL LL .  CO CO   . h- 
20 

Hz 
40 60 

o 
LL 

ro 
L- 

0 
<D o 
o < 

o 
ro 
L_ 

cu o 
o 
< 

(d) X Axis Node 33 
Of] 

0 MC^ 
-20 

w        o> 
' fro 

[c 
-40 

-60 

1  o> I   c 
1   x> c 

0) 
m 

ro.E 
V         C XI 

C XI 
to C 

x: 
ro 

CD 
XI 
c 

ro c 
£ £ 

m m 
-fil) ^ o o p n 

CO 0)  o o 
.*- 0 0 x: x: 

inn u. LLCO CO h- K 
20 

Hz 
40 60 

(f) X Axis Node 20 
on 

0 

-20 
ro c 

-40 

-60 

1 ro 
■// ^ 
//   c 
I   * 

CO 

ro.E 
C X) 

£§ 
sm 
S: -o 

CD c 

x: 
ro 

m 
■a 
c 

.E ^ 

CD   CO 
-80 «- o o X>   X> 

CO  o 
.*- 0 

o 
0 x: x: 

inn LL LLCO CO 1- 1- 
20 

Hz 
40 60 

.o 

a; 
0 o o 
< 

(a) Y Axis Node 17 
20 

0 
A    A 

-20 

-40 \/l     - 
c 
o 

/ O) C II     c 2> 
c 
o 

-60 1   "O 'co 
I    0 

m o CO 

0 o X> XI h- m 1- c c 
-fiO o o XI 

o o 
0 0 x: 

inn LL LL .  CO CO I- 
20 40 60 

20 

-20 
o 

LL 

o 
ro 
0 
0 
8  -60 

-40 

-80|   £ 

-100. 

(h)X Axis Node 17 

ro 

Iku 

c 
ro ^l '     ro 

/ o> f  c 
1 ~® 1   c 
[    CO 

c XJ' 

C XI 
CD c 

ro 

CD 
X) 
c 

ro c 
.E xl 
■o  ro    . 
0  2 
m m 

*- o o ■g -g 
CO   Ü o 
.*- 0 0 x: x: 

1     LL LLCO CO      . 1- 1- 
20 

Hz Hz 
40 60 

Experimental 
Modeled 

Figure 1. Baseline Model FRFs Before Updating [37] 

14 



20 

ü 0 
n 
n 
r -20 
o 
CD -40 
CD 
(l> 
O -60 
< 

-80 

■100 

(a) Y Axis Node 36 

pco ™ c o 
/    D) C 

X> 
C 2 c o 

■D 
C '(/) 

(D 
CD 

o 
1- 10 

o 
1- CD o XI XI ffl H c c ,   , o o XI o u 

CD CD X: 
LL U- . w w  . 1- 

20 40 60 

(b)XAx s Node 36 
20 

(11 o U 
o 
II 
r -20 
o ' CO 

co\Y C 
CD 
L_ 

CD 

CD 
O 
ü < 

-40 

-60 

-80 

/  co 

1    XI 
C 
CD 
m 

CXJ   1 

CD C 

m 
XJ 
C 

CO 
C0   C 

~2 to    . 
§  £ 

CD  CD 

~ o o "S 'S V) CO   ü ü 
>  <D CD x: x: 

_inn LL u-co co i- i- 

20 40 60 
Hz Hz 

(c Y Axis Node 33 
20 

0 A 
-20 'wv rfr 
-40 

CO 
c c 

o 
/   co C c CO c 

o 
-60 x> 

c 'co 
0) 

CD 
o 10 

o 
h- CD o x> x> 

CD 1- c c 
-81) o o -o o o 

L_ i_ CD CD X: 
inn LL LL , v> w  , \- 

20 

o 
LL 

co 
l_ 
jD 
CD 
O 
O 
< 

-20 

-40 

-60 

20 40 60 
Hz 

(e) Y Axis Node 20 

Di y 
c IF c 

o 

. 

/ co [ XI c 
o 

1    XI c *to 
CD 

CD 
o 

T
or

si
 

CD O T3 XI 
CD 1- C c 

O o "S O u 
i_ i_ CD CD x: 

LL LL .  CO OT   . 1- 

-80  £ Z 

-100 
20 40 60 

20 

o 
LL 
"c -20 
g 

S -40 
0) 
CD 
8   -60 

-80 [ « 

-100. 

c 
.o 

0) 
CD o o 
< 

(d) X Axis Node 33 

J            CO [C 

f    D) 
1   c 
1   x> c 

<D 

C X) 

SS 
co CD 

S-o 

x: 
ID 
2. 

CD 

co c 

"9 to    . 
§   £ 

CD  CD CD CD c C 
.« o o 'S 'S CO co o o 
>  CD 0 je  x: 

LL LLCO co 1-  1- 
20 40 

Hz 
60 

(f) X Axis Node 20 
20 

0 

-20 
co 

CD 
C 

-40 

-60 

1 co 
// c 

1/   c 
1     CD 

CD 

co.E 
C XI 

SS 
S: xi 

CD c 

X: 

CD 
XI c 

/co 

? 15   . 

CD  CD 
-81) 4- o o TJ   XI 

'       CO co o ü 
>  CD CD jz x: 

inn LL LLCO CO       . 1- 1- 
20 

Hz Hz 
40 60 

20 

'S -20 

I -40 
-60 

-80 

-100 

(g)Y Axis Node 17 

/  co 
1    c 

c 
o 

/ CO C 1    x) to c 
o 

/ f 1   c 'co 
CD 

CD 
o 
r- 

CO 

o 
H 1    0 o X> XJ 

CD h- C c 
O o 'S O o 

L_ V. CD CD x: 
LL LL .   CO CO   . 1- 

20 
Hz 

40 60 

(h)X Axis Node 17 
20 ' 1 

Cl> o U / V             AJL 
o 
II. 

-20 f           ^^Hl  \ 
n D>                IB c             «w 
CD 
L- 
CD 

CD 
O 
O < 

-40 

-60 

/ co 
I   c 

1  x> I    c 
1     CD 

CD 

co c 1 
c XI1 
£§' 
CD CD 
CD 
C X) 

CD  C nd
 B

re
at

h 

B
en

di
ng

 
B

re
at

hi
ng

 

-fill »- o o            xi xi 
CO  o o            > .»- 

.»-  CD CD            x: x: 
inn LL LLCO CO               t-  1- 

20 
Hz 

40 60 

Experimental 
Modeled 

Figure 2. Baseline FRFs After Updating [37] 
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Figure 3. Stiff Model FRFs Before Updating [37] 
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Figure 4. Stiff Model FRFs After Updating [37] 
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Research has been conducted into how to model structural joints accurately without resorting 

to detailed FE meshes. One approach taken by Kienholtz [17] was to build physical scale models 

of structural joints. Belvin [4] used linear springs and dashpots, and non-linear creep and friction 

elements, in order to create linear and non-linear analytical models of joints.  The properties of 

the analytical joint models were determined using experimental data from load-deflection testing. 

This method has the disadvantages of requiring experimental data on the joint, introducing 

damping into the FE analysis, and possibly requiring a non-linear FE analysis. 

When the joints cannot be separated from the structure for testing, other methods are required. 

Wang and Sas [42] developed a method which uses an approximate eigenvector of the structure to 

iteratively converge on a single joint's parameter values.  This method assumed all the physical 

parameters of the system were known except for those associated with the joint.  Tsai and Chou 

[39] developed a method to identify the dynamic characteristics of a single bolted joint from the 

measured FRFs of substructures and the assembled structure. This method required the isolation 

of substructures from the rest of the system, but had the advantage of not requiring sensors to be 

near the joint. 

Mottershead, et. al. [24] developed an approach to joint modeling which used geometric 

offsets to parameterize multiple joints in a structure. Rigid elements were used to connect nodes 

displaced by a geometric offset.  Two FE models of a beam with welded flanges, one with rigid 

links connecting offset nodes and another with translational and rotational springs connecting 

offset nodes, were compared.   The eigenvalues of the modeled beam were shown to be more 

sensitive to geometric offset parameters than to spring constant or beam thickness parameters. 

Ahmadian, et. al. [2] reformulated the concept of geometric offsets into a partly rigid beam 

element for FE models.  Horton, et. al. [15] compared model updating of the welded joints in a 

tubular H frame with joints parameterized with either springs or geometric offsets. Better update 

results were achieved using geometric offsets. 
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Geometrie offsets were chosen to model and update the FTE joints in this thesis. This method 

was chosen based on the successful use of geometric offsets to model joints by Mottershead, et. al. 

[24], Ahmadian, et. al. [2], and Horton, et. al. [15]. Geometric offsets were particularly attractive, 

because they do not add DOF to the FE model. Furthermore, geometric offsets have the physical 

meaning of expanding and contracting the rigid area of the joint as the offset parameters change 

during updating. 

2.6  Summary 

Model updating and damage detection are two rapidly progressing areas of research. Lament 

and Cogan [19] and Rade, et. al. [30] have applied antiresonance to model updating and shown 

its potential benefits.  However, the applications of antiresonance to model updating are few and 

usually limited to numerical examples. This thesis applies model updating using antiresonance to 

an experimental structure, compares the method to model updating using only natural frequencies, 

and analyzes the physical correctness of the updated model by using it to detect damage.  Also, 

both Doebling et. al. [7] and Friswell and Penny [10] have cited the need for studies that test 

damage detection methods on experimental rather than simulated structures, and for studies that 

directly compare damage detection methods.  This thesis tests two FRF based damage detection 

methods, a pattern classifier method and a curve-fit method, on an experimental structure and 

compares results. 
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Chapter 3 - Theory 

This chapter contains the mathematical theory behind model updating and antiresonance. 

First, the relationship between antiresonant frequencies and mode shapes is explained to provide 

the motivation for using antiresonant frequencies in model updating.   The equations used in 

model updating, including those for the calculation of antiresonant frequencies, eigenvalue and 

antiresonant eigenvalue sensitivities, and the tracking of modes, are presented. 

3.1  Antiresonance / Mode Shape Relationship 

The displacement response at DOF p due to a unit harmonic force input at DOF q for a FE 

model with no repeated eigenvalues can be written as [9:23]: 

*„(»)-£ , feK{»° <■> 
where 

p - measured DOF 

q = input force DOF 

r = number of modes 

{(f)j]  = the pth element of the jth mode shape vector 

u)n. = the jth natural frequency 

to = input forcing frequency 

C = the jth modal damping factor 

A close inspection of (1) shows that the magnitude of the FRF will become very large as to 

approaches conj (assuming £ -'s are very small for structures). This phenomena is called resonance. 

Antiresonance is defined as the frequency at which the FRF goes to zero [28:395]. 

For a frequency ui between two natural frequencies, u)nj and u)Ui+,, the magnitude of the FRF 

will typically be dominated by the contributions from modes j and j + 1. Considering only these 
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two dominant terms in an undamped system, equation (1) can be written as: 

Hpq(u) =  ^ 2~^ H 2 2  ^ 

From (2) it is easy to see that if the products {^}   [4>j]   and {0J+1}   {0J+1}   are 

the same sign, there exists an antiresonant frequency u)a between u>nj and t<v,+,, where 

hpq{u)a) = 0.   Furthermore, consider the case of a collocated actuator and sensor p = q.  Then 

{(f)A   {(f)j}   = {(f)j} , which is positive for all j.   Therefore, the collocated case produces 

an antiresonance between every two resonant peaks and the resonances and antiresonances will 

interlace. For non-collocated actuators and sensors p ^ q, no such interlacing property generally 

exists. 

For an undamped structure, the FRF can be formulated as the following transfer function 

between a sensor p and an actuator q[\]: 

Hpq(s) = J±-±± y-^- (3) 
n-=1(*2+K)2) 

where 

k = a constant coefficient 

m = the number of second order zeros 

n = the number of second order poles 

s = jw the Laplace variable 

Equation (1) shows that the FRF is completely defined by the natural frequencies and 

mode shapes of the system (ignoring damping).  Equation (3) shows that the FRF is completely 

defined by the natural frequencies and antiresonant frequencies of the system.   Therefore, the 

antiresonances must contain information about the mode shapes of a system.  This demonstrates 

that antiresonance can be used as an indirect (but perhaps more accurate) way to update FE model 

mode shapes to match experimental mode shapes. Mottershead confirmed this fact by formulating 

the antiresonance sensitivities as a function of the eigenvalues and mode shape sensitivities of a 

structure [26]. 
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3.2  Calculating Antiresonant Frequencies 

Antiresonant frequencies could be solved from either (1) or (3) by setting hpq = 0. However, 

this method would require knowledge of the modal damping factors and truncation to keep the 

problem computationally manageable.   To develop a more accurate and efficient method of 

calculating the antiresonances, consider the following development taken from He and Li [14]. 

Start with the undamped FE equation of motion in the time domain: 

[M]{d} + {K]{d} = {f} (4) 

For a force vector {/} = {F}sinu;£ resulting in harmonic response {d} — {D}sintot, (4) 

becomes: 

({K]-u;2{M}){D} = {F} (5) 

Therefore the response {D} of the system is: 

{D} = ([K\-Jim)-1{F} (6) 

The FRF matrix [H(u))] is typically defined as: 

[H{u)] = {\K}-u2[M])-' (7) 

The FRF for a sensor at DOF p and an actuator at DOF q will be the pqth element of [H]: 

Hpq(co) - ([K] - w [M])pq _   det([Ä]_w2[Af]) W 

The adjoint is defined as the transpose of the cofactor of a matrix. The cofactor of a matrix [A] is: 

Cpq = (-l)p+<1det([A\pq) (9) 

where [A]pq denotes that row p and column q have been deleted from the matrix.  Therefore, (8) 

can be written as: 

Hpq[u)-{    1) det([K]_w2[M]) tIUJ 

where [K]pq and [M]pq denote that row p and column q have been deleted from the matrices. 

The antiresonances are the positive roots of the numerator of (10).   Therefore the antiresonant 

frequencies u>a for the FRF between p and q are the positive roots of the following equation: 

det([K]pq - K)2 [M]pq) = 0 (11) 
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We define the antiresonant eigenvalues as the squares of these roots (Aa = {uia) ).  If damping 

were included in this development, the roots of equation (11) would be antiresonant natural 

frequencies w°, and the antiresonant eigenvalues would be defined as A° = (a;°) .   For the 

undamped case, antiresonant frequencies and antiresonant natural frequencies are the same, just as 

resonant frequencies and natural frequencies are the same. 

Equation (11) has the interesting interpretation that the antiresonant frequencies for an FRF 

between p and q are the natural frequencies of the system with rowp and column q removed from 

the mass and stiffness matrices.  Notice that, for a collocated sensor and actuator FRF p — q, 

the same row and column are deleted from [M] and [K], and the matrices remain symmetric. 

Therefore, the antiresonant eigenvalues of collocated FRFs are always real numbers.  In the case 

of non-collocated sensors and actuators p ^ q, [M] and [K] are, in general, not symmetric, and the 

antiresonant eigenvalues can be real or complex conjugates [44:435-438]. 

For this thesis, an eigenanalysis of [M]pq and [K]pq was used to calculate antiresonant 

frequencies during model updating.   The MATLAB™ function eigs was used to extract the 

low frequency antiresonant eigenvalues from the unsymmetric matrices [20].  The MATLAB™ 

SDT subspace iteration eigensolver was used to extract the low frequency eigenvalues from the 

symmetric [M] and [K] matrices [3]. 

3.3  Model Updating - Penalty Method 

The penalty method is a frequently used method for updating FE models using the 

sensitivities of modal data. This development of the penalty method was taken from Friswell and 

Mottershead's text on FE model updating [9]. 

The first step in FE updating is to decide upon which data to compare in updateing the model. 

The penalty method can use eigenvalues, mode shapes, and modal damping factors, but for this 

thesis only eigenvalues are used. The error between the experimental and modeled eigenvalues is 
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defined as: 

6zi = Ae. - Am.        i = l...n (12) 

where the subscript e denotes experimental, m denotes modeled, and n is the number of eigenvalues 

being used to update the model. Then the perturbation in the update parameters is defined as: 

69 i = 9 neWj       "oldj 3 = 1 • • • r (13) 

where r is the number of update parameters. A 1st order Taylor series expansion is used to relate 

6zj to bQi 

6zi~^se + ?hö9 + --- + ^b9       i = l...n dXi 
d9r 301 302 

Equation (14) can be written in matrix form as: 

{bz}nxi « [S]nxr{69}rxi 

[S} = 
Ö0, 

691 

d9,. 

d\„ 

(14) 

(15) 

(16) 

[5] is called the sensitivity matrix because it contains the sensitivities of each eigenvalue to each 

update parameter.  Subtracting [S] {b9} from both sides gives the error {e} in the lsi order Taylor 

series approximation: 

{e} = {6z}-[S\{60}ss{O} (17) 

The scalar penalty function J is constructed from the weighted sum of squared errors in the 

predicted measurements {e}. In order to make this set of equations well conditioned, the weighted 

deviation from the initial update parameters is added to the penalty function J.  This reflects the 

desire for a solution that reproduces the experimental data by changing the update parameters as 

little as possible. The penalty function is: 

J = {e)T\Wee\{e} + {{9} - {9}0}
T [Wee] {{9} - {0}o} (18) 

where 

[WeE] = weighting matrix on the measured eigenvalues 

24 



[Wee] = weighting matrix on the update parameters 

{8}0 = initial values of the update parameters 

The penalty function J can be minimized with respect to the update parameters by setting 

the derivative of J with respect to the update parameters equal to zero and solving for {69}. The 

resulting solution for the set of update parameters that minimizes the penalty function is: 

{66} = [[Sf [Wee] [S] + [Wee]}"' {[S}T [We£] {6z} - [Wee] {{0} - {6}0}} (19) 

This equation is iteratively applied, recalculating [S] at every iteration, until the update parameters 

converge. 

3.4 Penalty Method Extended to Include Antiresonant Frequencies 

The penalty method can easily be extended to include antiresonant frequencies in model 

updating.   The antiresonant eigenvalues are defined as the antiresonant frequencies (measured 

experimentally) squared.  The modeled antiresonant eigenvalues come from the eigenanalysis of 

(11). The penalty method including antiresonances can be written as: 

K = K,-Knb     b = \...k (20) 

{6zY {<5z}nxl 
{6za}kxl 

[S](n+k)xASß}rxl (21) 

[S}* = 

0A, 

d\„ 

ÖA£ 
301 

00i 

0A, 
00,. 

00,. 

0A" 

0A£ 
00,. 

(22) 

where A; is the number of antiresonant eigenvalues used to update the model. The penalty method 

is solved iteratively in the same way, according to (19). 

25 



3.5 Eigenvalue Sensitivities 

The eigenvalue sensitivities required in equation (22) can be derived from the standard 

eigenproblem [22:126]: 

([K\-Xi[M\){<f>i} = 0 (23) 

Differentiation of (23) with respect to an update parameter 9j gives: 

<W-M«l>^ + (^-^-§M)<«-o <*> 
Pre-multiplying (24) by {4>i}T gives: 

The first term in (25) is equal to zero by (23). Solving for the eigenvalue sensitivity gives: 

ax,    W(3g-V3{fl)M 

The mass and stiffness matrices sensitivities can be found by finite differencing [22:125]: 

d[K]    „    [K{00i+69s)]-[K(00i)] 
dBj     ~ 69j 

(26) 

(27) 

0[M] [M(Öo, +«öi)]-[M(Ö0J] 
90j 86j 

(28) 

Finite differencing allows any FE parameter to be used as an update parameter without having 

to analytically derive the mass and stiffness sensitivities.  This allows different choices in update 

parameters to be quickly studied. The speed of the algorithm can be improved for a particular set 

of update parameters by using analytical mass and stiffness sensitivities. 

3.6 Antiresonance Sensitivities 

Antiresonant eigenvalue sensitivities are also required in equation (22). As seen previously, 

antiresonant eigenvalues can be found from the eigenanalysis of [M] and [K] where the row 

corresponding to the sensor DOF p and the column corresponding to the actuator DOF q are 

deleted.    [M]pq and [K]pq will no longer be symmetric matrices in general.   Notice that 

{0JT ([K] - Xi [M]) in (25) is not equal to zero by (23) if [M]m and [K]pq are not symmetric. 

Therefore, the antiresonant eigenvalue sensitivities require a slightly different derivation than 
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the eigenvalue sensitivities.   Equations (23) and (24) can be rewritten for the antiresonant 

eigenproblem as: 

([JflM - Xi [M\„) M = 0 (29) 

(i*]M^iMU)^ + &-AS 

d[M] pq 

d6i 
OK 
do* 

[M]pq   {fa} = 0      (30) 
J3 \     ""3 ^"3 ^w3 

where Xb is an antiresonant eigenvalue, and the subscripts pq denote that row p and column q have 

been deleted from [M] and [K\. Now consider a different but related eigenproblem: 

([K]pq-Xa
b[M]pqf{Vb} = 0 (31) 

Since the eigenvalues of a matrix are invariant with respect to the transpose operation [21:484], the 

eigenvalues from (31) will be the same as the eigenvalues from (29).  However, the eigenvectors 

{qb} will not be the same as the eigenvectors {4>b}. Transposing (31) gives: 

{%}T {[K)pq - K M„) = 0 (32) 

The eigenvector {r)b} is called the left eigenvector because it pre-multiplies ([^]pg - Xb [M]pA 

whereas the standard right eigenvector post-multiplies ([K]pq — \b [M]pq 

Pre-multiplying (30) by {qb}
T gives: 

9M {vbf (mPq - K [M]pq) ?j$£+HI 
d[K)pq _     d[M] 

Mi b    do 
pq - |r iMU) M = o 

The first term in (33) is equal to zero by (32). Solving for the antiresonance sensitivity gives: 

d\b _ iVbl K-Wj Äb  ae,   i m/ 

(33) 

dB 4 
(34) 

Notice that if [M] and [K] are symmetric matrices, then {rjb} = {<j>b} and (34) reduces to the 

symmetric eigenvalue sensitivity equation (26).   The sensitivities of [K]pq and [M]pq can be 

obtained by simply deleting row p and column q from the sensitivities of [K] and[M] from 

equations (27) and (28): 

d[K] pq 

dBi 

d[K] 

d[M] 
dB, 

pq      _ d[M\ 

(35) 

(36) 
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3.7  Mode Pairing 

During the update process, the experimental eigenvalues and modeled eigenvalues must be 

paired in equations (12) and (20) so that they correspond to the same modes.  An initial pairing 

can be made by a visual comparison of the mode shapes. However, as model parameters change 

during updating, modes may switch position in frequency. If left uncorrected such a switch could 

result in the erroneous pairing of, for example, a bending mode with a torsion mode.  Therefore, 

some method of mode tracking must be used. 

The Modal Assurance Criterion (MAC) was used to automatically pair mode shapes during 

updating.   The MAC between an experimental eigenvector {4>e}j and a modeled eigenvector 

{4>m\k is defined as [9:57]: 

MACik = 
We}J{<f>m}k 

ik ~~ a A \Ti (37) 

The MAC will have a value between 0 and 1 where 1 indicates an exact correlation.   A MAC 

matrix can be formed by the MAC values for each combination of experimental and modeled 

mode shapes. The MATLAB™ SDT function iijnac was used to calculate the MAC matrix [3]. 

The mode shapes from the initial FE model were used to define the 11 "experimental" modes 

used in updating. The actual experimental mode shapes were not used because they were defined 

by only 8 DOR The initial modeled mode shapes had 1488 DOF which provided a better MAC 

comparison between mode shapes during updating. The MAC matrix between the initial 11 mode 

shapes and the lowest 15 mode shapes calculated at some iteration in the update process {iterative 

mode shapes) was formed.   Each iterative mode shape was paired to its maximum MAC value 

initial mode shape. If the maximum MAC value in a column of the MAC matrix was less than 0.7, 

the iterative eigenvalue corresponding to that iterative mode shape was removed from the update 

analysis. 
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Equations (23), (29), (37), (13), (12), (20), (21), (27), (28), (35), (36), (26), (34), (22), and 

(19) form the set of equations used in model updating. These equations are summarized in the 

context of the model updating process in Chapter 6. 
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Chapter 4 - Experimental Setup 

The experimental setup did not change from previous AFIT research conducted by Captain 

Eric Swenson and Captain Richard Cobb. Therefore, this chapter includes only a brief description 

of the experimental setup. For more details see Swenson [37] and Cobb [5]. 

4.1  Flexible Truss Experiment 

The FTE was originally part of the 12-Meter Truss Active Vibration Control Experiment 

developed for the Wright Laboratories Large Space Structures Technology Program [12].   The 

FTE was given to AFIT where it was set up as a vertically cantilevered 6-Meter truss.   The 

assembled truss has a square cross section of 20 inches. It is made up of two equal length frames 

which are bolted together by horizontal plates at mid structure.  Each of the two frames is made 

up of four vertical square cross section aluminum longerons that run the length of the frame. The 

longerons are connected by horizontal battens which divide the FTE into 8 bays.  Each bay has 

four tubular bolt-in Lexan diagonal members arranged to create a back to back "K" pattern over 

the FTE. Figure 5 is a diagram of the FTE. For exact FTE dimensions see Swenson [37]. 

Although the FTE is called a truss, its connections are not pinned but bolted and welded, 

and can be more accurately described as a frame. The FTE diagonals are bolted to vertical plates 

which are welded to battens and longerons. These connections are called vertical plate joints and 

are shown in Figure 7.   Two 3 meter frames are connected at the middle of the FTE by bolted 

horizontal plates that are welded to vertical plates and longerons.   These joints are called the 

mid-plate joints and are shown in Figure 8. Horizontal plates are also present at the top of the FTE. 

These joints are called the top-plate joints and are shown in Figure 9. Finally, the locations where 

battens are welded to longerons, but no diagonals are present, are called the regular batten joints. 
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Input to Shakers Shakers 

Accelerometers 

y36 shaker x33 shaker 

Figure 5. Diagram of Experiment Setup [37] Figure 6. Top View of FTE 

m. 

fc' 

Figure 7. Vertical Plate Joint [37] Figure 8. Mid-plate Joint [37] 

The FTE lends itself easily to damage detection research.   Removing diagonal members 

simulates a complete break ofthat member. Replacing a diagonal member with one with only 50% 

of the normal cross sectional area simulates a loss of stiffness in that member. For this research, 

112 possible damage states and one undamaged state were considered.  The 112 damage states 

consisted of 32 states where one diagonal was removed, 32 states where one diagonal had 50% the 

normal cross sectional area, and 48 combinations of two diagonals removed in the same bay. 
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4.2 Actuators and Sensors 

The FTE is excited by two momentum exchange proof-mass actuators. The two actuators are 

named x33 and y36; because, in the FE model, they are positioned at node 33 and 36 and aligned 

in the x and y directions as shown in Figure 6. Each actuator contains a proof-mass that slides on 

low friction shafts.  The proof-masses are centered by lightweight springs and accelerated by the 

electromagnetic field generated by coils fixed to the housing. Figure 9 shows one of the shakers. 

For the undamaged FTE, the z33 shaker primarily excites the x bending and breathing modes and 

the y36 shaker primarily excites the y bending and torsional modes. 

;""ilSii*& 

Figure 9. Shaker, Accelerometers, and Top-plate Joint [37] 

Each shaker was used to generate a force input with an amplitude of approximately 1 pound 

peak to peak.   The shakers produce 0.2 lbs per volt of periodic input signal.   The two shakers 

were operated simultaneously from a common pseudo-random white noise voltage signal with an 

amplitude of 2.22 volts. The pseudo-random white noise was generated by the Scientific Atlanta 

Pro Series Dynamic Signal Analyzer (SA390) and cut off at 100 Hz by a low-pass filter. 

(R) 
Eight single-axis Sunstrand Q-Flex     accelerometers are bolted to the FTE, four at the mid 

section and four at the free end as shown in Figure 8 and Figure 9. The accelerometers are bolted 
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to the same two longerons as the shakers and aligned in the x and y directions. The accelerometer 

signals were amplified and conditioned before being sent to the SA390. 

4.3 Data Collection 

The SA 390 is a self contained Intel 486 personal computer (PC) with built-in digital signal 

processing boards. The SA 390 runs the Pro Series Analyzer acquisition software. The system is 

able to acquire, process, analyze, and display data from eight channels. The sampling rate for the 

SA 390 was set to 256 Hz.  The SA 390 converted the amplified and conditioned accelerometer 

signals from analog to digital form.   It then converted the time domain data into the frequency 

domain using a Fast Fourier Transform (FFT) algorithm.  The input signal was multiplied by a 

Hanning window to prevent leakage.   The FRF was computed by the SA 390 using the cross 

properties mode. The FRF, with range 0-100 Hz, consisted of 400 data points and was generated 

from 100 averaged FRFs, each generated from 1,024 time domain samples [35]. 

Eight measured FRFs, one from each accelerometer, were used in updating the FE model. 

These FRFs were recorded by averaging 2000 FRFs to ensure that they were very accurate. Two 

measured FRFs, one from each sensor collocated with a shaker, were used in damage detection. 

These FRFs were recorded by averaging 100 FRFs, which left some variability in the data but only 

took 18 seconds to accomplish. The experimental FRFs for all of the damaged configurations of 

the FTE were collected by Gaeta [11]. 

The SA 390 was controlled by an external program through the Dynamic Data Exchange 

(DDE) feature. The DDE allowed commands to be sent between MATLAB™ and the Pro Series 

Analyzer software.   Damage detection was initiated by executing a MATLAB™ m-file that 

commanded the SA 390 to collect two FRFs from 100 averaged FRFs of the vibrating structure. 

The m-file then analyzed the returned measured FRFs to identify the damage state. 
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Chapter 5 - Finite Element Modeling 

This chapter contains the development of the FE model of the FTE. A brief description of the 

FEM, the 12 DOF beam element, and the concept of differential stiffness is given. The FE model 

of the FTE is described along with the method of parameterizing the FTE joints. Lastly, the initial 

results from the model are given and compared to previous models of the FTE. 

5.1  Finite Element Method 

The FEM is a mathematical modeling technique that uses discrete point properties to model 

continuous structures. Elements are formed by placing modes along the boundaries of common 

shapes, describing the potential and kinetic energy of the body in terms of displacements at these 

nodes, and using these to form mass and stiffness matrices. Damping may also be incorporated 

in the system with damper elements or other methods. The equation of motion for the system is 

represented by the second-order matrix differential equation in equation (38). 

[M]{d} + [C}{d} + [K]{d} = {f} (38) 

where 

[M] = mass matrix 

[C] = damping matrix 

[K] = stiffness matrix 

{d} = displacement vector 

{/} = force vector 

{d} and {d} = first and second time derivatives of {d} 

If [C] is proportional to [M] and [K] then equation (38) can be uncoupled by a coordinate 

transformation to modal coordinates.   This coordinate transformation involves the use of the 

system modal matrix [(/>], whose columns are the eigenvectors of equation (38) with [C] = [0]. The 

FEM equation of motion can be transformed to modal coordinates in a two step process:   1) Let 
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{d} = [<fi\{q}, 2) Pre-multiply by {cf>]T.  If [0] is normalized such that [4>}T[M}{cf>} = [I], where 

[I] is the identity matrix (this is called mass normalization), the modal FEM equation of motion is 

[21:195]: 

{q} + [2frn]{q} + [u%\{q} = {p} (39) 

where 

[u>n] = [0]T[-K"][0] = a diagonal matrix of natural frequencies squared 

[2(u}n] = [0]r[C][</>] = a diagonal matrix of damping factors multiplied by 2un 

{p} = [0]T{/} = modal force vector 

{q} = [4>}{d} = modal displacement vector 

This is often the easiest form of the equations for determination of forced response. 

5.2  Finite Elements Used 

The Structural Dynamics Toolbox™ (SDT) for MATLAB™ was used to create a FE model 

of the FTE. The SDT beam element, beaml, was used to model all the members of the FTE. The 

beaml element is the standard 12 DOF beam element, with 3 translational and 3 rotational DOF at 

each of its 2 nodes. A diagram of the element DOF is included in Figure 10. (Note that the 12 DOF 

beam element does not use a right handed coordinate system. This is consistent with the definition 

of the element used in the SDT.) The SDT uses consistent mass matrices for the elemental mass 

matrices. The elemental stiffness matrices use linear interpolations for beam traction and torsion 

and cubic interpolations for flexion.  The mass and stiffness matrices for the beaml element are 

included in Appendix A along with the geometric and material properties of the FTE members. 
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Figure 10. 12 DOF Beam Element [37] 

Coordinate transformations were applied to the element matrices of Appendix A to rotate the 

elements into their positions in 3D space. The element matrices were then assembled in order to 

create the global mass and stiffness matrices of equation (38). For a more thorough development 

of the FEM, the derivation of beam elements, consistent mass, or global matrix assembly, refer to 

any FE text, e.g. [6]. 

5.3 Non-Linear Stress Softening 

The SDT beaml element consists of independent axial and flexural stiffnesses.  However, 

axial loads and bending deformations can be coupled through a second order effect that is normally 

ignored in strictly linear FEM theory. The second order effect is often called differential stiffness 

and will be explained by way of example. 

Consider the beam under the distributed load q in Figure 11 a. The beam undergoes a bending 

deformation of magnitude wc at the beam midpoint. The beam in Figure 1 lb is under an axial load 

P and a distributed transverse load q.  The bending deformation, caused by q, attempts to draw 

the beam endpoints in toward the center, but the axial load P pulls the beam ends in the opposite 

directions. Clearly, the presence of the axial load P reduces the amount of bending deformation. 
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Therefore, a beam under axial tension is said to be stress stiffened.  Similarly, axial compression 

increases the amount of bending deformation and softens the beam. 

- - % — - . 
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Figure 11. Non-linear Stress Stiffening in Beams 

The standard beam elemental stiffness matrix can be easily corrected to account for stress 

stiffening or softening by adding the following corrective stiffness matrix [6:434]: 

[ka]     = 30L 

36 -3L -36 -3L 
-3L 4L2 3L -L2 

-36 3L 36 3L 
-3L -L2 3L 4L2 

(40) 

with nodal DOF {d} = [ w\   £x   u>2   £2 ]    as shown in Figure 10.   By including the same 

corrective stiffness matrix for the nodal DOF {d} = [ ux   6\   u2   62 ]   , and by inserting the 

appropriate rows and columns of zeros for the other DOF, the corrective stiffness matrix was 

expanded to a 12 by 12 matrix and added to the element stiffness matrix. 

This thesis included non-linear stress softening in the FE analysis because Cobb's, Swenson's, 

and this research's FE updates all greatly reduced the elastic modulus of the longerons.   The 

longeron elastic modulus was reduced by as much as 30%, which indicated a large modeling error 

in that parameter.  It was thought that ignoring stress softening may have been one cause of the 

modeling error in longeron stiffness, since the longerons were long (6 meters), thin-walled (0.065 

inches), and under a 7.5 lbs compressive static load from each shaker. However, stress softening 

had a very small effect on the FE model.   The first bending mode had the largest change when 

stress softening was included. It was reduced in natural frequency by only 0.07%. 
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In this research, the element axial loads, P in equation (40), were determined by a static 

solution of FTE under the load of its own weight.  The NASTRAN™ function GRAV [32:616] 

was used to generate nodal loads based on the FE model mass matrix.  The internal beam forces 

were output from NASTRAN™ and input into the SDT model.  As expected, the static load of 

the FTE was almost entirely carried by the vertically oriented longerons, and the diagonals and 

battens were nearly zero-force members.  The SDT beaml element was modified to accept the 

axial load P from the NASTRAN™ static solution, form [ka], and add it to the standard beam 

stiffness matrix before coordinate transformations are applied. 

5.4 Joint Model 

The FE model created for this research, called the joint model, sought to incorporate the 

positive attributes of both Cobb's baseline model and Swenson's stiff model.   The joint model 

would model the FTE joints and place the diagonal end masses in realistic locations as in 

Swenson's model.  It would also use few DOF as in Cobb's model.  In addition, the joint model 

added the new feature of using the joint dimensions as update parameters. 

The vertical plate joints were modeled using rigid links as shown in Figure 12. One rigid link 

was used to place the lumped diagonal end mass in its realistic position.  Another rigid link was 

used to connect to the diagonal beam element to the master node. This rigid link could be shorter 

than the distance to the lumped mass so that the joint would not be overstiffened.   The regular 

batten, mid-plate and top-plate joints were modeled similarly as shown in Figures 13, 14, and 15. 

The distances in Figures 12, 13, 14, and 15 (dL, dM, dB, dK, dRB, dMp, dTP) represent the lengths 

of the rigid links that were used to parameterize the joint. The subscripts L, M, B, K, RB, MB 

and TP stand for Longeron, Mass, Batten, Stiffness, Regular Batten, Mid-Plate, and Top-Plate. 
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Figure 12. Vertical Plate Joint FE Mesh 
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Figure 13. Regular Batten Joint FE Mesh 

•'MP 

(Top View) (Top View) 

Figure 14. Mid-plate Joint FE Mesh Figure 15. Top-plate Joint FE Mesh 

The joint model had several other improvements over previous models.   Each proof mass 

actuator was modeled as a lumped mass with no mass in the actuated DOF. This reflected the near 

frictionless sliding of the proof mass along one axis.  The actuator masses were offset above the 

top of the FTE by 2.5 inches and the top sensors were offset below the top of the FTE by 2 inches 

to reflect their real positions.  Again, this was accomplished using rigid links.  Lastly, since the 

rigid links lengthened and shortened the beam elements from their realistic lengths, additional 

lumped masses were placed at the endpoints of the beam elements to maintain correct mass during 

39 



updating. The amount of these additional masses varied to correct for the amount of mass added 

or lost by changes in beam element length. The accelerometers, bolts, and welds in the FTE were 

also modeled as lumped masses. 

The joint model used 248 nodes but only had 192 DOF, the same size as Cobb's baseline 

model. Each node that was attached by a rigid link had no DOF of its own, because it was slaved 

to a master node through a coordinate transformation matrix [6:220].   This made rigid links a 

very efficient way to parameterize joints. The SDT was used to assemble the global FE mass and 

stiffness matrices, reduce out rigid DOF, solve for the first 20 normal modes, and plot the FRFs for 

the 8 accelerometers. The whole process required 23 seconds on a 166 MHz Pentium PC. 

5.5  Initial Model Results 

Initial values were chosen for the joint parameters based on the geometry of the joints. Table 

2 shows the initial values used for the joint parameters.  As mentioned previously, the longerons 

were found to be too stiff in the model.   This was the reason for including non-linear stress 

softening correction elements in the analysis.   The longerons certainly should not be stiffened 

further by rigid links in their joints, and therefore d^ was made effectively zero. 

Table 2. Initial Joint Parameters 

Joint Parameter 
See Figures 12, 13, 14, and 15 for Parameter Definitions 

Inital Value (Inches) 

dL 0.1 

<LM 4.5 
dB 1.0 
dK 2.0 

dRB 0.5 
(IMP 2.5 

drp 2.5 

Using the parameters from Table 2, the initial fit between the joint model FRFs and the 

experimental FRFs are shown in Figure 16. Modal damping of 0.01 was applied to all FE model 

modes for plotting appearance only. 
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During the development of the joint model, emphasis was placed on obtaining the correct 

order of resonances and antiresonances in the FRFs.   It was especially difficult to get an 

antiresonance to appear between the first breathing and second bending modes in the x36 FRF 

(See Figures 1, 2, 3 and 4).   In fact, as part of this research many parameters in Cobb's and 

Swenson's models were varied in an attempt to correctly model the x36 antiresonance between the 

first breathing and second bending modes.  These models never produced such an antiresonance 

even after updating. The apparent inability of these models to correctly order the resonances and 

antiresonances indicated a systematic modeling error that consistently produced mode shapes for 

which the products {(f>lst breathing}x36 {4>l.st breathing}3.33 an<^ {4>2nd bending}l36 {^Ind bending}x33 

were not the same sign (See equation (2)).  An antiresonance can only appear between the first 

bending and second breathing modes if these two products are of the same sign, so that the 

response at the measured DOF due to the first mode destructively interferes with the response at 

the measured DOF due to the second. 

In creating the joint model, it was found that modeling the regular batten joints with rigid 

links (Figure 13) and removing the proof mass actuator mass in the direction of actuation were the 

critical modeling changes that produced the correct resonance-antiresonance order in the x36 FRF. 

A comparison of the first breathing and second bending mode shapes from the stiff model and the 

joint model is shown in Figure 17. Clearly, re-ordering the resonances and antiresonances to match 

experimental data forced changes in the mode shapes. Figure 17 provides another motivating 

illustration for using antiresonances as an indirect way to update mode shapes in FE models. 

The initial FE model showed the correct order resonances and antiresonances in all 8 FRFs. 

Therefore, this model was chosen as the starting point for model updating using natural frequencies 

and antiresonant frequencies. Model updating is covered in the next chapter. 

42 



Stiff Model Joint Model 
X33 DOF 

X33 DOF 
X36 DOF 

First Breathing Second Bending 

W*33M,36 W,33W. *36 

(+X-M-L (-X-M+) 
Not same sign: 
No antiresonance between these modes 

X36 DOF 

First Breathing Second Bending 

(+X+)=(+)    (+X+W+) 
x36 

Same sign: 
Antiresonance between these modes 

Figure 17. Mode Shape Comparison Between Stiff and Joint Models 
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Chapter 6 - Finite Element Model Updating 

This chapter describes the process and results of FE model updating on the FTE. An 

overview of the iterative update process is presented with the equations required in updating. The 

identification of natural frequencies and antiresonant frequencies is discussed. The reasons for the 

choices of update parameters and weighting matrices are given. Finally, the results are compared 

for two model updates.   The first used antiresonant frequencies and natural frequencies and the 

second used only natural frequencies. 

6.1 Introduction 

There were several motivations for using antiresonant frequencies to update the FE model 

of the FTE. Previous models of the FTE had produced reasonable correlations between model 

and experimental data in terms of overall FRFs or natural frequencies.   However, these models 

produced a poor correlation between modeled and experimental antiresonances (see Figures 2 

and 4).  Therefore, it was anticipated that the use of antiresonances in updating would improve 

existing models. Also, previous research had produced better damage detection results with modal 

updated models than with FRF updated models (see Table 1).   Antiresonances again seemed 

attractive, because they can be derived as modal parameters of submatrices of the system matrices 

(see equation (11)).   Lastly, researchers such as Lallement [19], Rade [30], Mottershead [25], 

and Friswell [9] have recently shown that the use of antiresonance in model updating increases 

the knowledge space, serves as a more accurate substitute for mode shape data, and can improve 

update results. 

6.2 Overview 

The joint model required updating to improve its fit to the experimental FRFs. The approach 

taken in matching the experimental and modeled FRFs was to match the experimental and modeled 

natural frequencies and antiresonant frequencies.  The penalty method was chosen as the update 
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method, because it accommodated the use of antiresonant frequencies in updating and the use of 

a wide variety of possible update parameters.   Since most of the errors in the FE model were 

assumed to be in the modeling of the joints, the lengths of the rigid links that model the joints were 

used as update parameters. Figure 18 shows the process of model updating. 

Start: 
Initial {9} 

1 
Assemble [M] and [K] 

Find A,  (41) 

Pair Mode 
Shapes (43) L 

Find Xa
b  (42) 

Form 
{5z} (47) 

1 
Find 

S[M] 
de, 

and *[K] 
de, 

(48,49) 

I 

Find §- and §- (52,53) 
dOj ad. 

Form [S] (54) 

Identify 

Identify 

Solve for {56} (55) 

Find {9} (44) 

Yes 
Find 
{6} (44) 

Finish: 
Final {9} 

Figure 18. FE Update Method Flowchart 

The equations used in FE model updating were developed in Chapter 3 and are repeated here 

for convenience. 

([tf]-Ai[M]){&}    -   0 (41) 

({K)pq ~ K\M]pq) M   =   0 (42) 

MACjk = 
Mji+mh 

(amb)({<un<u*) (43) 
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6.3  Eigenvalue and Antiresonance Identification 

The first step in model updating was to identify the experimental eigenvalues and 

antiresonant eigenvalues. This process is indicated by the two boxes labeled identify in Figure 18. 

Eigenstructure realization algorithm (ERA) was chosen as the modal identification technique for 

this research because of its accuracy in identifying closely space modes, and its ability to work 

with MIMO systems. ERA uses time domain impulse response functions, which are found via an 

inverse Fourier Transform of the FRFs, to construct a state space model of the system.   It then 

identifies the modal parameters by completing an eigensolution of the state space system matrix 

[16].   Since ERA produces extraneous computational modes, the extended modal amplitude 

coherence (EMAC) was used as a measure of confidence that the identified mode was present in 

the experimental structure.  An EMAC of 100% indicated a perfect correspondence between the 

identified mode and the experimental mode. 

A MIMO ERA MATLAB™ m-file written by Dr. Joseph Hollkamp was used to identify 

the natural frequencies of the FTE.  The natural frequencies and corresponding EMACs are 

included in Table 3. All but one mode was identified with EMACs above 90% which indicated a 

successful modal identification. Results closely matched the location of the resonant peaks in the 

experimental FRFs as expected. 

Table 3. Identified Natural Frequencies 

Mode Natural Frequency (Hz) EMAC (%) 

1st Bending- x 6.40 98.02 
1st Bending -y 6.43 98.68 
1 st Torsion 12.69 96.54 
1 st Breathing 22.33 97.63 
2nd Bending - x 24.22 99.18 
2nd Bending - y 24.03 98.65 
2nd Torsion 36.42 98.05 
2nd Breathing 34.14 99.18 
3rd Bending - x 49.58 83.09 
3rd Bending - y 49.68 98.85 
3rd Breathing 54.47 92.84 
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For this lightly damped structure, the antiresonant natural frequencies were assumed to be 

very near the antiresonant frequencies. Therefore, the antiresonant frequencies were visually taken 

from the experimental FRFs using the MATLABTJW zoom function. The 21 identified antiresonant 

frequencies used in updating are marked with x's in Figure 19.  An algorithm for the automatic 

identification of antiresonant frequencies from experimental FRFs warrants further research. 

The identified natural frequencies and antiresonant frequencies were all squared and formed 

into a vector.  The difference between this vector and its FEM counterpart was used to form the 

{6z} in Figure 18 according to equations (45), (46), and (47). 

6.4 Choice of Update Parameters 

The choice of update parameters is critical to successful model updating. Update parameters 

should represent areas of the model where modeling errors are likely. Also, the measurements used 

in updating (natural frequencies and antiresonant frequencies in this research) should be sensitive 

to the update parameters chosen. Update parameters that have a similar effect on the modal data, 

such as the length of a beam and its flexural rigidity, should be avoided.  Lastly, the number of 

update parameters should be as few as possible to keep the problem well conditioned.   These 

guidelines help make the update process fast, stable, unique, and physically meaningful [9:279]. 

For the FTE, the likely source of modeling error was in the joints. Therefore, five parameters 

were chosen to be the joint rigid link parameters dx, dß, daß, drp, and dMP as defined in Figures 

13, 14, and 15. The longeron elastic modulus (EL) was included as a global update parameter 

which could affect all modes. EL was also included because previous model updates had required 

large reductions in EL to lower the bending modes to match experimental data. The longeron 

rigid link dj, was left at its initial value of 0.1, because any increase in rigid length e^ would force 

a greater reduction in EL to compensate. 

Trial updates with these parameters resulted in convergence to negative values for dß and 

daß-   Although physically unrealistic, the negative values indicated that the update algorithm 
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desired to reduce the flexural rigidity of the battens by increasing batten length.  Therefore, the 

battens' bending moment of inertia (hatt) was included as another parameter so that the algorithm 

could reduce the flexural rigidity of the battens directly without having to use negative joint 

dimensions to increase batten lengths. The final set of update parameters is shown in Table 5. 

Update parameters must be scaled so that a perturbation in each one produces eigenvalue and 

antiresonance sensitivities of similar magnitude.  This is necessary for the update method to be 

well conditioned.  The parameters EL and I^att were scaled so that their initial values were one. 

The rigid link dimensions in inches were used for the joint parameters without any scaling. 

6.5  Choice of Weighting Matrices 

Another strength of the penalty method is the ability to assign weighting matrices to both the 

measured data and the parameter estimates (See equation (19)). The weighting matrix [Wee] was 

included in the model updating algorithm to account for different levels of error in the different 

measurements.   For example, natural frequencies are typically measured more accurately than 

mode shapes. The weighting matrix [Wee] was included in the model updating algorithm in order 

to account for the different ranges on the parameters.   For example, it may be desired to allow 

relatively large changes to one parameter and relatively small changes to another.  Friswell and 

Mottershead recommend letting the weighting matrices [Wee] and [Wge] be diagonal matrices with 

their elements equal to the reciprocal of the corresponding estimated measurement and parameter 

variances [9].   The variance is calculated as the standard deviation squared.   The estimated 

standard deviations are chosen based on an assumption that each measurement or parameter is one 

sample from a statistical distribution of possible measurements and parameters [23:362]. 

The standard deviations of the natural frequencies were assumed to be 0.5% of their identified 

values.   The standard deviations of the antiresonant natural frequencies were assumed to be 

1% of their identified values since they were obtained visually.   The standard deviations of the 

update parameters were based on the reasonable limits of rigid joint dimensions and thereby on 
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the geometry of the FTE joints.  The estimated standard deviations of the update parameters are 

included in Table 4.   The standard deviations were squared to get the variances, inverted, and 

placed on the diagonals of the weighting matrices. 

Table 4. Estimated Standard Deviations of the Update Parameters 

Update Parameter Estimated Standard Deviation 

EL 10% 

Ibatt 10% 
dK 1.00 inch 

dß 0.50 inch 

dRB 0.25 inch 

drp 0.50 inch 

dMP 0.50 inch 

6.6 Updating Results 

The first update, called the antiresonant update because it included antiresonance data, 

converged in five iterations taking 19.5 minutes on a 166 MHz Pentium PC. Convergence was 

defined as the Euclidean norm of the parameter step vector {68} being less than 0.01.  Updating 

results are shown in Table 5. The final joint parameters satisfied physical intuition. The mid-plate 

joint was slightly more rigid than the top-plate joint, because it was made of two horizontal plates 

instead of one. The batten rigid link was twice as long as the regular batten rigid link, because the 

battens were not welded to vertical plates in the regular batten longeron joint.  All the rigid link 

dimensions remained physically reasonable based on the joint geometries. The update made large 

changes in the parameters EL and Ibatt- The physical reason for the large amount of model error in 

these variables is unknown. Perhaps both the longerons and battens have a varying wall thickness 

that is thinner than the wall thickness used in the model.  However, when wall thicknesses were 

used as update parameters the resulting model produced worse results. 

51 



Table 5. Final Parameter Values from Antiresonant Update 

Update Parameter Initial Value Iteration 1 Iteration 2 Iteration 3 Iteration 4 Final Value 

EL 1.0 0.6871 0.7092 0.7098 0.7098 0.7098 

hatt 1.0 0.6787 0.5654 0.5966 0.5982 0.5982 
dK 2.0 1.7150 1.8976 1.8968 1.8967 1.8967 
dB 1.0 0.6734 1.0596 0.8822 0.8738 0.8741 

dRB 0.5 0.3241 0.5085 0.4251 0.4284 0.4287 

d-TP 2.5 3.2060 3.7164 3.6144 3.6102 3.6102 

(IMP 2.5 3.2152 3.7443 3.6367 3.6319 3.6318 

In order to evaluate the benefit of using antiresonance data in updating, another update, called 

the non-antiresonant update, with the same update parameters, starting point, and convergence 

criteria was accomplished using only the identified natural frequencies in Table 3.   Thus the 

sensitivity matrix [S] in equation (54) was reduced from a 32 x 7 matrix to an 11 by 7 matrix. The 

update was initially unstable.  The weighting matrix on the initial parameters, [Wee] in equation 

(55), had to be multiplied by 30 to get the update to converge on a set of final values for the update 

parameters.   The instability was expected based on the fact that the update was solving for the 

same number of unknown parameters with fewer equations. The update converged in 4 iterations 

and required 5.7 minutes of computation on a 166 MHz Pentium PC. The results of the update is 

shown in Table 6.  The final non-antiresonant update parameters changed less from their initial 

values than in the antiresonant update, which was expected because [Wee] was 30 times greater. 

Table 6. Final Update Parameter Values from Non-Antiresonant Update 

Update Parameter Initial Value Iteration 1 Iteration 2 Iteration 3 Final Value 

EL 1.0 0.7098 0.7235 0.7235 0.7235 

Ibatt 1.0 0.9038 0.8917 0.8886 0.8879 
dK 2.0 1.6396 1.7833 1.7855 1.7877 

dß 1.0 0.8474 0.8579 0.8649 0.8660 

dRB 0.5 0.4535 0.4594 0.4623 0.4628 

drp 2.5 2.1482 2.1555 2.1677 2.1688 
dMp 2.5 2.3868 2.4065 2.4162 2.4180 

Figures 20 and 21 show the FRFs from the antiresonant and non-antiresonant updated joint 

models.   Modal damping of 0.01 was applied to all FE model modes for plotting appearance 
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only. Both updated joint models visibly match the experimental data better than previous updated 

models (see Figures 2 and 4). 

Table 7 compares the non-updated, the non-antiresonant updated, and the antiresonant updated 

joint models in Figures 16, 20 and 21 to experimental data based on the following cost function: 

3 = £ (bg \\-H(^)'\ExPerimental\ ~ lo§ \[H\U)\modeleS) (56) 

where [H(u>)] is a matrix whose columns are the 8 complex valued FRFs from the 8 FTE 

accelerometers. Each FRF consisted of 240 frequency points spaced evenly between 0 and 60 Hz. 

Table 7. Cost Function Values Before and After Updating 

FE Model Cost Function Value 

Non-Updated Joint Model 69.14 
Non-Antiresonant Updated Joint Model 12.27 
Antiresonant Updated Joint Model 6.59 

Based on Table 7, the antiresonant updated joint model produced a 46% better correlation to 

the experimental FRFs than the non-antiresonant updated joint model.   The antiresonant updated 

joint model especially outperformed the non-antiresonant updated model in the troublesome region 

around the first breathing and second bending modes of the x36 FRF (see Figures 21 and 20). 

Model updating using antiresonant frequencies was successful at modeling the undamaged FTE. 

The next chapter examines whether or not antiresonance updating produced a physically realistic 

model. 
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Figure 20. Non-Antiresonant Updated Joint Model FRFs 
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Figure 21. Antiresonant Updated Joint Model FRFs 
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Chapter 7 - Damage Detection 

This chapter describes the process and results of damage detection on the FTE. A description 

of the 112 damaged configurations of the FTE is given. A pattern classifier and a curve-fit method 

of damage detection are described and applied to the damaged FTE configurations.   Damage 

detection results from both methods are presented and compared to previous damage detection 

efforts on the FTE. 

7.1 Introduction 

An updated model may match the experimental data used in updating without matching 

other experimental data not used in updating, such as the response at higher frequencies, other 

sensor locations, or the responses under different structural configurations, boundary conditions, 

or loadings. Such an updated model is not physically realistic, and the updated parameters do not 

necessarily correct modeling errors.  The true test of a FE update method is whether the updated 

parameters corrected modeling errors and resulted in a more physically realistic model. 

For this research, the physical correctness of the antiresonant updated joint model was 

validated by using the model to predict the FRFs of damaged configurations of the FTE. The 

modeled FRFs were compared to the experimental FRFs using two damage detection methods - a 

pattern classification method and a curve-fit method. 

7.2 Flexible Truss Experiment Damage 

A total of 112 possible damaged configurations of the FTE were considered.  The first 32 

damage cases corresponded to configurations where a single bolt-in diagonal was removed from 

the FTE. Cases where a diagonal was completely removed were called 700% damage cases. 

Another 32 damage cases corresponded to configurations where a single bolt-in diagonal was 

replaced with a diagonal that had only 50% of the normal cross sectional area. The 50% diagonal 

was created by cutting a diagonal in half length-wise.   These cases were called 50% damage 
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cases. Lastly, 48 damage cases corresponded to configurations where two diagonals were removed 

simultaneously from a single bay of the FTE. These cases were called double damage cases. 

The FTE damage cases were modeled using the antiresonant updated joint model. The 100% 

damage cases were modeled by deleting a diagonal element and its lumped end masses in the 

FE model.  The 50% diagonal cases were modeled by a diagonal element with 50% the normal 

cross sectional area and recalculated bending moments of inertia {I\ and I2). Tracking the modal 

damping for each mode was not feasible, because, in damaged configurations, modes switched 

positions and new modes shifted down into the 0 to 60 Hz frequency range of interest. Therefore, 

modal damping of 0.01 was applied to all FE model modes. 

Only the two sensors collocated with the actuators, x33 and y36, were used to detect damage. 

This decision reflected the desire to use as few sensors as possible on a flexible space structure. 

Also, the FRFs from 0 to 60 Hz only were used in damage detection, because no modes above 60 

Hz were included in model updating. An example of modeled and experimental FRFs for one of 

the damage cases is shown in Figure 22. Damage detection seemed promising based on the good 

fit between modeled and experimental data in this damage case. Notice that although the FRFs in 

Figure 22 were from collocated sensor-actuator pairs, they did not have the resonant-antiresonant 

interlacing pattern. This was because the damaged FTE was no longer symmetric; therefore, since 

multiple excitation was used, the FRFs obtained do not follow the collocated input-output FRF 

patterns. Each damaged FRF must be considered a multi-input single-output (MISO) FRF instead 

of a single-input single-output (SI SO) FRF as in the undamaged case. 
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Figure 22. Member 17 Damaged FRFs 

7.3 Pattern Classification Method 

Swenson [37] developed a damage detection method that used pattern classifiers.   The 

process reduces the experimental and modeled FRFs into feature vectors that contain the FRFs' 

characteristic properties.   The feature extraction process is accomplished by integrating the 

area under the FRF curve using 40 weighted triangular filters spaced along the frequency axis. 

(Swenson used 20 triangular filters.  Gaeta [11] achieved better damage detection results with 40 

triangular filters.) The extracted features are arranged in a vector, which is then transformed via 

a discrete cosine transformation and plotted as a point in 40 dimensional space.   One hundred 

training FRFs undergo this process so that a region in 40 dimensional space is defined by a 

statistical distribution of the 100 scattered points. The type of statistical methods used to describe 

this region defines the type of pattern classifier used. The Gaussian grand full pattern classifier 

used by Swenson was also used in this research. 

Swenson's method of producing training data from the updated FE model was followed. 

Variability was added to the modeled FRFs to simulate the variability in the experimental data. 

The variability of the experimental data was measured by taking 100 experimental FRFs of the 

undamaged FTE.  The mean FRF and the standard deviation of points away from the mean 

FRF was calculated.   Using the MATLAB™ random number generator, 100 training FRFs 
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were created that had the same standard deviation of points away from the modeled FRF as the 

experimental data had from the mean FRF. In order to ensure that the undamaged case was always 

correctly identified, 100 experimental FRFs were used for the undamaged training data.   The 

undamaged FRFs were assumed to be known, since they were used in model updating. 

The production of FE model training data assumed that the variability in the experimental 

FRF was independent of frequency, when in fact the experimental FRFs were especially noisy 

around resonances and antiresonances.   This frequency dependent local variability in the 

experimental data was effectively spread over all frequencies in the modeled training data.  This 

method also applied a variability derived from the undamaged FTE FRFs to the modeled training 

FRFs for damaged configurations.  However, the variability of the damaged configuration FRFs 

may not have been the same as the undamaged variability.  Despite these problems, this method 

was used to create training data for the pattern classifier. 

Damage detection was accomplished by measuring the FRFs from the damaged FTE, 

extracting their features, and plotting the transformed feature vector, called the test vector, in 40 

dimensional space.   A discriminant function was computed from the test vector to each region 

representing the different damage cases.  The discriminant function was based on the distances 

from the test vector to the damage case regions and on the statistical distributions (spread) of those 

regions. The region corresponding to the lowest discriminant function was identified as the actual 

damage case. For more details on damage detection using pattern classification, see Swenson [37]. 

7.4 Curve-Fit Method 

The curve-fit method is a simple method of damage detection developed as part of this 

research. The method simply compared two test FRFs (x33 and y36) from the FTE to a catalog of 

FE FRFs of the different damage cases to see how well the curves fit. In order to ensure that the 

undamaged case was always correctly identified, experimental FRFs were used in the catalog for 

the undamaged case.  The undamaged FRFs were assumed to be known, since they were used in 
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model updating. A cost function was computed as the sum of squared error between the two test 

FRFs and the two modeled FRFs.   A cost was evaluated between the test FRFs and each of the 

damaged case FRFs in the catalog. The cost function used was: 

J = E 0°g I [ {^33}    {HVK} }Test\ - log I [ {Hx33}    {iW ]Mo J)2        (57) 

where H is a complex valued FRF vector. 

The damage case corresponding to the lowest cost function was identified as the actual 

damage case. 

7.5 Damage Detection Results - 32 Damage Cases 

The first damage set consisted of 32 100% damaged diagonal configurations and one 

undamaged configuration. Both damage detection methods were tested against 3,300 test sets of 

x33 and y36 FRFs (100 for each of the 33 FTE configurations).  The damage detection accuracy 

percentage of the pattern classifier and curve-fit methods are shown in Table 8. Swenson's damage 

detection results using the stiff model are included for comparison. 

Table 8. Damage Detection Accuracy Rates (32 Damage Cases) 

Updated FE Model Damage Detection Method Accuracy Rate (%) 

Joint Model Curve-Fit 100.0 
Joint Model Pattern Classifer 98.5 
Stiff Model [37:56] Pattern Classifier 79.0 

Two comparisons can be made based on the results in Table 8. First, a comparison can 

be made between the joint model and the stiff model, since they were both used with pattern 

classifiers. The pattern classifier was much more accurate when using training data from the 

antiresonant updated joint model than when using the FRF updated stiff model. The second 

comparison that can be made is between the performance of the curve-fit and pattern classifier 

methods, since they both used the same FE model to detect damage. The curve-fit method was 

slightly more accurate than the pattern classifier, and it required only 0.6 seconds to identify 

damage compared to 3.5 seconds for the pattern classifier on a 166 MHz Pentium PC. 
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7.6 Damage Detection Results - 112 Damage Cases 

A second damage set consisting of 112 damage configurations was also tested. This damage 

set included the 32 100% damage cases, 32 50% damaged diagonal cases, and 48 double damage 

cases. Both damage detection methods were tested against 11,300 test sets of x33 and y36 FRFs 

(100 for each of the 113 FTE configurations). The damage detection accuracy percentage of the 

pattern classifier and curve-fit methods are shown in Table 9. A breakdown of the types of errors 

made by the two types of damage detection method is included in Table 10. 

Table 9. Damage Detection Accuracy Rates (113 Damage Cases) 

Updated FE Model Damage Detection Method Accuracy Rate (%) 

Joint Model Curve-Fit 92.6 
Joint Model Pattern Classifer 76.1 

Table 10. Damage Detection Accuracy Breakdown 

Damage Category Curve-Fit Method 

( Cases Always Correctly Identified ^ 
\      Number of Possible Cases      J 

Pattern Classifier Method 

(Cases Always Correctly Identified^ 
\      Number of Possible Cases      ) 

Undamaged 
1 
T 

1 
1 

50% Damaged 
16 
32 

2 
32 

100% Damaged 
32 
32 

31 
32 

Double Damaged 
48 
48 

45 
48 

Again, the curve-fit method was more accurate than the pattern classifier.  The errors made 

by the curve-fit method were all confined to 50% damaged members. This indicated that the FRFs 

of the undamaged FTE and the 50% damaged diagonal cases were all very similar.   The slight 

experimental FRF changes due to damage were small enough to be indistinguishable from the 

initial mismatch between model and experimental FRFs caused by errors in the FE model. Lastly, 
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it was observed that the curve-fit method required 0.7 seconds to identify damage from a test set of 

FRFs compared to 3.6 seconds for the pattern classifier on a 166 MHz Pentium PC. 

The fact that the curve-fit method was 100% successful in identifying all 100% damage and 

double damage cases, using only two sensors, validated the physical correctness of the antiresonant 

updated joint model.  The high quality of the joint model was attributed to the use of rigid links 

that were updated using antiresonances.   Furthermore, it was found that the curve-fit method 

was a better damage detection method than the pattern classifier method based on the fact that it 

produced more accurate results, required less computation, and did not require training data. 

The damage detection results in this research could be improved upon by using the natural 

frequencies and antiresonant frequencies of an FRF as characteristic features, because they 

(assuming light damping) completely define the FRF (see equation (3)).   A frequency change 

vector could be defined as the damaged natural frequencies and antiresonant natural frequencies 

minus their undamaged values.   To first order, this would remove the model errors from the 

damage detection process, since the errors are present in both the modeled undamaged FRF and 

the modeled damaged FRF [10]. This method would require an automatic identification tool that 

would quickly extract the natural frequencies and antiresonant natural frequencies, which may be 

complex, from an FRF. The tool must extract specific natural frequencies and antiresonances so 

that they correlate with the identified undamaged natural frequencies and antiresonances.   The 

development of an automatic antiresonance identification tool is a recommended area for further 

research. 
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Chapter 8 - Conclusions and Recommendations 

This research made contributions in the areas of modeling the FTE, FE model updating, 

and damage detection.  The results from these areas will be briefly reviewed.  Conclusions and 

recommendations from this research follow at the end of the chapter. 

8.1 Joint Modeling Results 

A new FE model of the FTE was created based on the conclusions of previous researchers 

that the majority of the error in previous models was due to inaccurate modeling of the joints. The 

model created for this research, called the joint model, was designed to improve the modeling of 

the FTE joints.   The approach taken was to parameterize the joints with rigid links of variable 

lengths. During updating, the rigid link dimensions changed, stiffening the joints as they grew and 

softening the joints as they shrunk. The lumped masses of the diagonal ends were lumped in their 

physically accurate locations via another rigid link, which was held constant.   This model was 

the first to produce the correct resonance-antiresonance order in all of the FTE FRFs even before 

updating.  Two critical elements to producing this correct order was the modeling of the regular 

batten joints with rigid links and the elimination of the proof mass actuator mass in the direction of 

actuation. Even with these modeling improvements the joint model had only 192 DOF. 

8.2 Finite Element Model Updating Using Antiresonance Results 

The iterative modal update method, called the penalty method, was expanded to include 

antiresonant frequencies. This method proved especially versatile in that it allowed antiresonance 

data, the use of virtually any parameter in the model as an update parameter, and the use of 

measurement and parameter weights. The penalty method was also very efficient because it used 

sensitivities to determine steps in the update parameters.   The parameters chosen for the FTE 

were five joint rigid link dimensions along with two beam properties.   The antiresonant update 

was highly successful in that it was fast (approximately 20 minutes on a 166 MHz Pentium PC), 
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produced parameter changes of reasonable size, and produced a model that matched experimental 

data well.  The antiresonant updated model produced FRFs that had a 46% better correlation to 

experimental FRFs than the same model updated using only natural frequencies. 

8.3  Damage Detection Results 

Damage detection was used as a test of the physical correctness of the antiresonant 

updated joint model.   The updated model was used to predict the FRFs of the FTE in damaged 

configurations.   The modeled damage FRFs were used with two different damage detection 

methods. The first method, called the pattern classifier method, condensed the modeled FRFs into 

feature vectors which were plotted in 40 dimensional space. Test FRFs were then taken from the 

FTE, condensed into feature vectors and plotted in 40 dimensional space. The method determined 

the damage case as the "nearest region" (in some statistical sense) to the test vector.  The second 

method, developed as part of this research and called the curve-fit method, took the modeled FRFs 

and assembled them into a catalog of possible damage cases. Test FRFs were then taken from the 

FTE. A cost function was computed as the sum of squared error between the test FRFs and each 

modeled FRF in the catalog of possible damage cases. The damage was identified as the damage 

case with the lowest cost function. 

Damage to the FTE was simulated in three ways.  In the first method, called 100% damage 

cases, one diagonal was removed from the FTE. In the second method, called the 50% damage 

cases, one diagonal was replaced with a diagonal of only 50% the normal cross sectional area. In 

the third method, called the double damage cases, two diagonals were simultaneously removed 

from a single bay of the FTE. These damage cases were modeled by removing the appropriate 

elements or replacing them with elements of 50% normal cross sectional area in the joint model. 

The first damage detection test considered only the 32 100% damaged diagonal cases.  The 

accuracy rates for the two damage detection methods in identifying the 32 damage cases are shown 

in Table 11.   The second damage detection test considered 112 damage cases consisting of the 
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32 100% damaged cases, 32 50% damaged cases, and 48 double damaged cases.  The accuracy 

rates for damage detection with 112 cases is shown in Table 12.  The curve-fit method produced 

better accuracy rates in both tests, which raises a question about the benefits of using the more 

complicated pattern classifier method. 

Table 11. Damage Detection Accuracy Rates (32 Damage Cases) 

Damage Detection Method Accuracy Rate (%) 

Curve-Fit 100.0 
Pattern Classifer 98.5 

Table 12. Damage Detection Accuracy Rates (113 Damage Cases) 

Damage Detection Method Accuracy Rate (%) 

Curve-Fit 92.6 
Pattern Classifer 76.1 

The breakdown in Table 13 shows where the errors in damage detection occurred.  The fact 

that the curve-fit method was 100% successful in identifying all 100% damage and double damage 

cases, using only two sensors, validated the physical correctness of the antiresonant updated joint 

model.   The 50% damage FRFs were too similar to each other and to the undamaged FRFs to 

reliably predict the damaged member. 

Table 13. Damage Detection Accuracy Breakdown 

Damage Category Curve-Fit Method 

/'Cases Always Correctly Identified^ 
\      Number of Possible Cases      / 

Pattern Classifier Method 

/'Cases Always Correctly Identified^ 
\      Number of Possible Cases      / 

Undamaged 
1 
1 

1 
1 

50% Damaged 
16 
32 

2 
32 

100% Damaged 
32 
32 

31 
32 

Double Damaged 
48 
48 

45 
48 
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8.4 Conclusions and Recommendations 

Several conclusions can be made based on this research. In the area of joint modeling, rigid 

links were an effective and simple joint modeling method.  The rigid links were also convenient 

update parameters for FE model updating.   The updated joint model proved to be an excellent 

model of the FTE in both undamaged and damaged configurations.   The updated joint model 

should be used in further FTE related research projects focusing on model updating, damage 

detection, vibration control, or other topics. 

In the area of FE model updating, antiresonant frequencies improved the stability of model 

updating and produced a more accurate model than updating with natural frequencies only.  The 

fact that the antiresonant updated model produced excellent models of damaged configurations 

of the structure indicated that antiresonance updating corrected modeling errors and produced a 

physically accurate model.   Antiresonance updating should be applied in further experimental 

studies and compared with other FE model update methods, especially those that include mode 

shape data. 

In the area of damage detection, the simple sum-of-squared error cost function used in the 

curve-fit method was more accurate in detecting damage than the pattern classifier.   Both the 

cost function and pattern classifier were unable to reliably locate a 50% damaged member in the 

structure.   FRF damage detection methods, such as the cost function and pattern classifier, are 

unable to differentiate whether the mismatch between modeled and experimental data is due to 

slight damage or FE model errors. Therefore, methods that use the changes in natural frequencies 

and antiresonant frequencies from undamaged values, should be preferred over FRF based damage 

detection methods. Frequency change methods should be more accurate because they remove the 

FE model error to first order from the damage detection process [10]. Frequency change methods 

were not attempted in this research, because a reliable automatic antiresonant identification 

tool was not found.   Research should also be conducted on the development of an automatic 
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antiresonance identification tool for model updating and damage detection, which will identify the 

antiresonant frequencies from experimental FRFs. 

Damage detection research on the FTE should be expanded so that a catalog of pre-defined 

possible damage cases is not required.   The concepts of model updating can be used so that 

update parameters converge to values that identify damage location and severity. This is a difficult 

and ill-defined problem, since there will be many possible parameters necessary to describe any 

arbitrary damage.   Antiresonance data can improve the conditioning of the damage detection 

problem by increasing the amount and accuracy of measured information available. Antiresonance 

shows great promise in improving FE model updating and damage detection methods. 

67 



APPENDIX A - Flexible Truss Experiment Member Properties 

This appendix gives the element mass and stiffness matrices and the material and geometric 

properties of the FTE's members.  Material and geometric properties of the FTE's members are 

taken from Swenson [37] with some slight modifications.  Exact dimensions of the FTE can be 

found in Swenson [37]. 

A.l  Element Matrices 

For the 12 DOF beam element the element mass and stiffness matrices are: 

N=fhi h! 1   J [m3]    [m4] 
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M  = 

M     =     T3 

N  - 

M  = 

II 

. N   [h] 
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0 12/       0          0 0 6/L 

E 0 0       12/        0 -6/L     0 

Iß 0 0         0       Gf 0 0 
0 0     -6/L      0 4L2 0 
0 6/L       0          0 0 4L2 _ 

" -AL2 0          0 0 0 0 
0 -12/       0 0 0       6/L 

E 0 0       -12/ 0 -6/L 0 
Iß 0 0          0       -(- 3JL2 

E 0 0 
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7ß 0 0           0           GJf 0 0 

0 0      -6/L 0 2L2 D 
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{d}    =     [lil    «i    W!    7X    öl    £x    u2    v2    w2    72    #2    £2 

where 

{d} = nodal displacement DOF as shown in Figure 10 

p = mass density (lbm/in3) 

L = the length of the beam (in) 

J = the polar moment of inertia of the cross sectional area (in4) 

E = Young's modulus of elasticity (lb//in2) 
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G = shear modulus of elasticity (lb//in2) 

A = the cross sectional area (in2) 

/ = the moment of inertia of the cross sectional area (in4) 

A.2  Material Properties 
Aluminum Properties 

Mass density(p) 2.699 g/cm3or 2.54E-4 lbm/ina 

Modulus of elasticity (E) 9.9E+6 lb//in* 
Modulus of elasticity in shear (G) 3.8E+6 lb//in* 

Table 14. Aluminum Properties [37] 

Lexan Properties 

Mass density(p) .99 g/cma or 9.32E-5 lbm/ina 

Modulus of elasticity (E) 5.01E+5 \bf/m
z 

Modulus of elasticity in shear (G) \.5E+5]bf/mz 

Table 15. Lexan Properties [37] 

A.3  Geometric Properties 

A.3.1   Longerons 

L = 

A = 

ly = 

J = 

29.44 in 

0.3731 in2 

Ix = 0.12831 in4 

0.25662 in4 
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A.3.2   Regular and Top Battens 

A.3.3   Mid Battens 

A.3.4   Diagonals 

L   =   18.375 in 

A   =   0.11012 in2 

Iy   =   lx = 3.5779 x 10~3 in4 

J   =   7.1558 x 10-3 in4 

L = 18.375 in 

A = 0.22025 in2 

Iy = 7.1558 x 10~3 in4 

Ix = 0.0622 in4 

J = 0.06937 in4 

L   =   34.33 in 

A   =   0.54 in2 

Iy   =   Ix = 0.12866 in4 

J   =   0.25732 in4 
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A.3.5   50% Damaged Diagonal 

L   =   34.33 in 

A   =   0.27 in2 

Iy   =   0.018 in4 

Ix   =   0.06433 in4 

J   =   0.0823 in4 
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